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Abstract 

An ordered partition P of a point group G is construc- 
ted in left cosets H...~ = . . .  B/3A~H related to a sub- 
group H by means of selected genitors A, B , . . . :  

P = {H.../3,~ I a = 1 to a, fl = 1 to b, . . .} ,  

ab. . .=IGI/IHI. 

This partition P spans a principal induced representa- 
tion (PIR) R(H:  G) of G. Then a basis L of this PIR 
is built: 

L={V...kjlJ = 1 to a, k =  1 to b , . . .}  

with 

b 
V...kj . . . .  Y. ~ exp[2iTr(.. .+kfl/b+ja/a)]H...o,~. 

13=1 t~=l 

In many cases L is a complete reduction basis (CRB) 
of R ( H  : G) for which all matrices are fully reduced. 
The possibility of obtaining such a CRB depends on 
the algebraic structure of the group G, on the con- 
sidered subgroup H and on the choice of genitors 
A, B, . . . .  Methods are proposed using subgroup 
chain properties, invariant inductor subgroup proper- 
ties, direct product properties etc. These methods 
have been applied to crystallographic point groups. 
Complete tables of CRBs are recorded for all PIRs 
of all crystallographic point groups except for  a few 
PIRs of the point groups 432, 43m and m3m. 

Introduction 

In practice the reduction of a reducible representation 
F of a group is not an easy task. The purpose is not 
only to determine the irreducible representations (IR) 
which are the components of F but also to find a 
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basis of the representation vector space for which the 
matrices of F are all in a reduced form. When each 
irreducible component appears once only, the projec- 
tion operators are usually used (Schonland, 1971; 
Bradley & Cracknell, 1972; Labarre, 1978); they lead 
to the required basis by a more or less laborious task. 
'The problem is more complicated when the same IR 
appears several times in F . . . .  There is no general 
m e t h o d . . ,  one proceeds as best as one can, guiding 
oneself according to the form of the matrices of F '  
(Schonland, 1971).* In the case of induced rep- 
resentations, reduction methods have been proposed 
by Bradley & Cracknell (1972) which applied to rep- 
resentations induced by invariant subgroups. 

In the present paper we will show that it is often 
possible in the case of a principal induced representa- 
tion (PIR) of a point group G, to build a reduced 
basis; it is not necessary to use the group algebra 
of G but a vector subspace O, the dimension of which 
is smaller than that of M; t  the vectors of this subspace 
are the cosets of the partition of G relating to the 
subgroup H inducing the PIR of G. It is not necessary 
for H to be invariant in G; no matrix diagonalization 
is needed in the reduction process; only the knowl- 
edge of the group multiplication table is required. An 
application of the method is to be able to propose 
basis vectors and reduced matrices for each IR of G. 

I. Building the ordered partition 
The PIR properties of a group are well known 
(Lomont, 1959; Murnagham, 1963; Kirillov, 1976). 

* After the French edition. 
t Except in the event of an inductor subgroup reduced to the 

identity element. In this case O is identical to M. 
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Litvin (1982), Berenson, Kotzev & Litvin (1982), Lit- 
vin, Kotzev & Birman (1982), Masmoud i  & Billiet 
(1989) have given numerous  applicat ions to crystal- 
lography. 

Consider  a point  group G of  order ]GI and the left 
part i t ion P of  G relating to a subgroup H of  order 
Inl distinct f rom G. We construct P as follows. Con- 
sider an e lement  A of  G not contained in H and 
designate the left coset A ~ H  by H~. Form the set PA 
of  different cosets H,," 

PA = {H, ,  HE, H3, • • •, H , } =  {H. I c~ = 1,2, 3 , . . . ,  a}. 

The n u m b e r  a is called the degree of  the genitor A, 
a is such that a > a involves the format ion of  cosets 
a l ready found.* Note that  a is not necessari ly the 
order of  A but  divides it. A must  be chosen in such 
a manne r  that a divides the index p of  H in G 
(p=IGI/IHI). I f  PA ~ P, choose another  e lement  B 
of G not conta ined in any coset of  PA and form the 
set PB of  cosets Ho~, with Ho,, = BOH~ = BOA~H: 

PB= {nt3~la = l , 2 , .  . . ,  a; 3 =  l , 2 , .  . ., b}. 

The degree b of  the genitor B is such that /3 > b 
involves the format ion of  cosets already found in PB. 
b divides the order of  B. B must be chosen in such 
a manne r  that  b is greater than 1 and divides p / a . t  
Note that it is often useful to take the e lement  B as 
a first genitor  i f  A is a power of B. If  Pn ~ P, the 
process is repeated to obtain the full left part i t ion P 
of  G related to H:  

P = {H...~,o~, = . . .  C~'Bt3A'~H] 

a = 1 to a,/3 = 1 to b, y =  1 to c , . . .} .  

One says that the part i t ion P is ordered by labels 
H...~m~. The degrees a, b, c , . . .  of  the genitors¢ A, B, 
C , . . .  fulfil the condi t ion abe . . .  =p. In most cases, 
there are several ways to order P because several 
choices are possible for the first genitor, then for the 
second one, and  so on.§ Final ly,  in the trivial ease 
H = G, one may  consider  that a unique genitor is 
needed,  it is of  course inc luded  in H and  its degree 
is 1. 

* That is to say, A" is the lowest power of A contained in H. 
* The fact that B is not contained in PA does not involve b > 1. 

Example: G=432, H = 3a+b+c2-a+b, A--2a+b,l a=2, B = 23+~1 
-b+c 
a-c 

and b = 1 ! 
The elements .4, B, C,... are called the genitors of the ordered 

partition to avoid any confusion with the generators of a group 
(or a subgroup), the meaning of which is entirely different. 

§ But in every way of ordering P, the subgroup H is always the 
last coset to appear: H = H...~b .. Note that if one changes the 
appearance order of the elements used as genitors, the required 
partition does not necessarily result; for G=432, H=  
3a+b+c2-a+b, a n  ordered partition with A ~ -2,- = 2a+b, B r e s u l t s  

-b+c 
a-c 

but one constructs no partition of G relating to H with A = 2 t 
and _ 1 B-2a+b! 

Table 1. Group G = 32, subgroup H = 1, four genitor 
choices for P 

The first column gives the choice number. The second and third 
columns give the chosen genitors. The following six columns refer 
to the labels H,,o of the different cosets of the partition. In the 
present case (H = 1), each coset is composed of a single element. 

No. A B (2D 1 (2_a_b) (2~) (3') (3 2) (1') 

1 3' 2~ HIt HI2 U]3 Hi, H~2 H~3 
2 3 2 2~ H~2 Hi, H~3 H~2 H~t H13 

4 2~ 3' U~, Ul, H~, H12 H~2 H~2 

Example 1 

G = 4 c E a m  a+b,  I G I = 8 ,  H = 2 c  ={2'c, 11}, IHI---2, 
b -a+b 

A = 4 1 , a = 2 , B = 2  l a , b = 2 , a b = 4 = p .  

PA = {4'.H, 2'c.H} = {(~3, ~1), (1',  2'c)} = {H1, H2}, 

p ~ _ { 2 ~ . ~ l . n ,  , , ~1 2a.2c.H, .H, 2lc.H} 

1 1 ={(ma+b, (2~, 2~), (~,3, ~, 1 m_a+b), ), (11, 2~)} * 

= {Hi , ,  H,2, H21, H22} = P. 

There are 23 other ways to order P because six choices 
are possible for A (~1, ~3, 21,2~,, ~ 1 m~+b, m-a+b),  then 
four choices are possible for B in the event of  A = ~1 

1 ml_a+b) and so on. (i.e. 21a,21b,ma+b, 

Example 2 

G = 3 c 2  a , 161=6,  H =  1={11}, IHI = 1, a = 3 1 ,  
b 

- a - b  

a = 3 ,  B = 2  l ,  b = 2 ,  a b = 6 = p .  

PA = {31.H, 32.H, I ' . H }  = {(31), (32), (11)} 

= { H1, H2, H3}, 

PB {21.3kH, 1 2 = 2~.3 .H, 2 ~.H, 

31.H, 32.H, 11.H} 

= {(2~,), (2L,,_b), (2~), (31), (32), (1~)} 

= {HI1, H12, H13, H21, H22, H23} = P. 

There exist al together 12 ways to order P depen-  
ding on the choice of  genitors. Some are recorded in 
Table 1. 

II. Bu i ld ing  the  bas is  re lated  to the ordered part i t ion 

To s impl i fy  the writing, we suppose that two genitors 
are sufficient to order the part i t ion P but  the theoreti- 
cal account  remains  true in pr inciple  whatever  the 

* The chronological order of symmetry-operation products goes 
from right to left: the meaning of X. Y is X preceded by Y. 
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actual number of genitors may be. It is known that 
the p partition cosets are a basis of the vector space 
O over the field C of the PIR R ( H  : G) of G relating 
to H. Unfortunately, this basis does not lead to 
reduced matrices. We construct a new basis of /-2 
related to the ordered partition, it allows reduced 
matrices to be obtained on numerous occasions and 
thus basis vectors for each IR constituting R ( H  : G). 
First it is necessary to define a scalar product in 12 
as follows: (H~. Hi )=  (1/p)6~, with H~ and Ht any 
two cosets of P; therefore the p vectors pl/2H~ are 
unit orthogonal vectors, they constitute a basis of 
and any vector of 0 is expressed by V =  P E~=, x,H~ 
with x~ ~ C. The value of the scalar product of two 
vectors o f / 2  is given by (V. V ' )=  (l/p)Y~=~ x~x'~* 
(x'~*: complex conjugate of x'~). 

For any representation (reducible or not) of a 
group, it is well known that a basis may be chosen 
for which the matrix of any element of G is unitary: 
its eigenvalues are some rth complex roots of 1, r 
being the order of the represented element. Then 
construct the following p vectors (1 <- k -< b, 1 <-j <- a): 

b 

Vkj = E ~ exp[2iTr(kfl/b+ja/a)]H/3,~. 
/3=1 c t= l  

These p vectors are unit orthogonal and constitute a 
basis L of O because 

( Vks . Vk'j') = (1/ P ) E exp[ 2irr( k - k') fl / b ] 
13 

x E exp [2 i r r ( j - j ' )a /a]  

= 8kk,8~,. 

Note that each vector VkS is an eigenvector for the 
genitor B and its powers because one has: B. Vkj = 
exp(-2izrk/b)Vks.  Thus the matrices of the PIR 
R(H"  G) are fully diagonalized for the elements B" 
in the basis L. The action on a given vector Vkj of 
other elements X of G leads, by means of a projection 
on the basis L of the transformed vectors X .  Vkj, to 
determine a subspace of O containing Vkj" this sub- 
space is invariant by G. In practice, it is sufficient to 
consider only the action of generators of G belonging 
to distinct conjugation classes. Therefore Vkj and the 
vectors of L which transform together with Vkj under 
the action of such generators form a basis of a subrep- 
resentation of R(H"  G). More often than not this 
subrepresentation is irreducible and it is easy to iden- 
tify its Mulliken notation by means of its trace values 
using character tables. The last vector of L, namely 
Vba, always generates the identical representation 
(contained in any PIR). If all so-obtained subrep- 
resentations are irreducible, the matrices of R (H" G) 
are entirely reduced in the basis L. Then this basis is 
called a complete reduction basis (CRB) of the con- 

Table 2. Characters of  the IRs of  group 42m 

AI 
A2 
Bt 
B2 
E 

1' 2 4' 2~ 2.2~ 2. ' • ,ma+ b 

1 1 1 1 1 
1 1 1 - 1  - 1  
1 - 1  1 1 - 1  
1 - 1  1 - 1  1 
2 0 - 2  0 0 

sidered PIR. The case H = G is trivial" R(H"  G) 
clearly is the identical representation, the basis of 
which is the vector V = G. 

Example 1 (continued) 
G = 4 2 m ,  H = 2 ~ ,  A = 4  ~, a = 2 ,  B = 2 ~ ,  b = 2 .  

Generators of G: 4~, 2~. 

V11 = H11 - H12 -/421 +/-/22 

--( m,,+ b , '  m l-,,+b) -- (2 ~ ,2 ~,) -- (a,3, a, 1 ) 

VI2 ~ 

V21 = 

V22 = 

4~. 11,1= 

a,,. V,:= 

a,~ V=,= 
a l V== 

2~ 
21 

2~ 

2'~ 

Vi i  ~ 

V12 = 

V=l=exp ( -2irr .2 /2)  V2, = V=I, 

V22 = exp (-2irr .  2/2) V22 = 1/22, 

+(1 ' ,  2~c), 

- H l l  - HI2+ H 2 1  + / - / 2 2 ,  

-H11 + H12 - H21 +//22, 

Hll  + H,2+ H21 +/-/22. 

(2~,, 2~) ' - (m,,+b, m[,,+t,) - (1', 2~) 

+ (a,', a?) 

H i 2  - HI, -/-/12+ H21 = - V i i ,  

- H , 2 -  H11+ H= + H:, = V12, 

- H , 2 +  H, ,  - H22+ H2, = - V2,, 

H,2 + H11+ H22 + H21 = V22, X = I ,  

exp (-2irr /2)  V,, = - VI,, X = -1 ,  

exp (-2irr /2)  1/12= - V12, X = -1 ,  

X = I ,  

X = I .  

, ~ "~  - - 1 ,  

X = I ,  

X = -1 ,  

The vector Vll transforms alone and generates the 
IR B2 because X(41) = - 1  and X(2~)= -1  (cf. Table 
2). In the same way, V~2 generates A2, V21 generates 
BI and 1/22 generates A L. 

To conclude: R ( 2 c : 4 2 m ) = B 2 + A 2 + B ~ + A ~ .  In 
the basis L = [ V~I, 1112, V21, V22] built in this way, the 
matrices of the PIR are fully reduced. 

III. Influence of the choice of genitors and of the group 
structure complexity 

When the structure of the group G is not too complex 
(cyclic groups and their direct and semi-direct prod- 
ucts), there always exists at least a choice of genitors 
enabling a CRB to be found whatever the considered 
PIR, i.e. whatever the subgroup H. 
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Table 3. Characters of  the IRs of group 4 

11 41 21 43 

A 1 1 1 1 
B 1 - 1  1 1 

f(1) 1 i -1 - i  
El(2) 1 -i -I i 

Example 3 
G = 4. Generator :  41. 
(a) H=2={21 ,11} ,A=41 ,  a=2.  

PA= {(43, 41), (11, 21)} = {HI , / - /2}  = P. 

V1 = - H 1  +/42 ,  V2 = H1 + H2, 

41. V I = - V 1 ,  41. V2= V2. 

V1 generates the IR B and V2 generates the IR A of 
4 (cf. Table 3)" [ V1, V2] is indeed a CRB of R ( 2 : 4 )  = 
B+A.  

(b) H = l = { l ~ } , A = 4 3 ,  a=4.  

PA = {(43), (21), (41), (11)} 

= { H1, H=, H3, H4}= P, 

I71 = i l l , -  HE-  ill3 + Hi,  

Vz= -H, + H2- H3 + H4 

V3 = i l l1-  H 2 + iH 3 +/-/4, 

V.= H, + + H3 + H4. 

41 • V1 = iV1, 41 • V2 = -V2 ,  

41 • V3 = -iV3, 41 • V4 = V4. 

171 generates the complex IR E(1)  (cf. Table 3), V3 
generates the complex conjugate IR E(2) ,  V2 is a 
basis for the IR B and V4 is a basis for the I R A .  
[V1, V2, V3, V4] is of  course a CRB of  R ( l ' 4 ) =  
E ( 1 ) + E ( 2 ) + B + A .  

Example 2 (continued) 
G = 32, H = 1. The 12 ways of  ordering P all lead 

to a CRB. We are going to compare  the CRBs relating 
to the four genitor  choices of  Table 1.31 and 2 la are 
the generators of  G. 

(a) Choice 1. Here is the basis L 1 [ j =  
exp (2i~r/3)]: 

V~ 1 = _jH~ 1 _j.2H, 21 _ H~ 3 +jH~I +j2Hi2  + Hi3 

V~2 = - j 2 H ~ 1 - j i l l 2 - H ~ 3  +j2Hil +jill2 + Hi3, 

v h  = - n l l  - H h -  HI3 + Hh + + Hi3, 
VI,=jH~I +j2H~2+ 1 • 1 . 2 1  I H13 +jH21 +J H22 + H23, 

VI2=j2H'lI+jH~2+ 1 . 2 1  • , 1 H13+J  H21 + J n 2 2 +  H 2 3 ,  

v h  H ' , , + H h +  , , = H13 + H21 + H~2 + H i 3 .  

Let us call W the t ransformed vector of  Vll by the 

Table 4. Characters of  the IRs of the group 32/ m 

The first three rows and the first three columns give the characters 
of  the IRs of  the group 32 (delete the subscript g of the Mulliken 
notation). 

11 2.31 3 .2~ 1 i I 2. ~1 3. m~ 

Atg 1 1 1 1 1 1 
A2g 1 1 -1 1 1 -1 
Eg 2 -1 0 2 -1 0 

Ai. 1 1 1 -1 -1 -1 
A2. 1 1 -1 -1 -1 1 
E. 2 -1 0 -2 1 0 

generator  31" 

W = 31 . V~l 

=_jH~3_j2Hlll  1 • 1 . 2 1  -- H 1 2 + j H 2 2 +  J H 2 3 + H 1 1  . 

To determine the components  of  W, we are projecting 
it on L 1 using the scalar products  (cf. § II). 

( W. VI I )=~( - j .  - 1 - j  2 . - j z - 1 .  - j  

+ j . j + j 2  1 + 1 . j 2 ) =  _ !  
• 2 ,  

( w .  v 2) = 0, ( w .  v h )  = 0, 

( W. Vii) = -i31/2/2, 

( w .  v h )  = o, (w ,  v h )  = o. 

1 1 Then we have: W =  31 . V~I -~Vl1-( i31/2/2)  Vii.  
In the same way we obtain: 31 . V~2 = 
-½V~2+( i3 t / 2 /2 )  Vi2,  31 • V~3 = V~3, 31 . Vii = 
-(i31/2/2) V~1 1 a 1 -~V21, 3 .V~E=(i31/2/E)V~2 1 ~-~V22, 
31 • vi3 = Vi3, 21 • V~I = -  V~I, 21.. Vl12 = -  V~2, 
2',. v h  = -  v h ,  2',. v' ,  = v h ,  2 ' .  v h  = v h ,  
2'.. v '3. 

So Vll and Vii are t ransformed together  and are 
a basis for an IR of  type E (compare  the traces of  
31 and 2'. with the characters given in Table 4). 
Likewise Vl12 and Vi2 are t ransformed together  and 
are a basis for another  IR of  the same type E, Vl13 
spans the IR A2 and Via generates the IR AI.  There- 
fore L 1 is a CRB for R ( l : 3 2 ) = 2 E + A 2 + A 1 .  

(b) Choice 2. In an analogous manner ,  the basis 
L 2 is constructed and its t ransformed vectors are 
projected o n  L 2. One finds: (VI21, V 2 2 1 )  ° E, 
(V22, V22)'E, V23 :a2, V23 "al .  Now let us project  
the vectors of  L 2 on L 1. It follows that  V21 = V]2, 
V21 = vi2,  so that  (V21, V21) spans the same IR of  
type E as (V~2, Vi2). Likewise (V22, V22) and 
( Vll ,  Vii) span the other  IR of  type E because V22 = 
V~ and V222 = Vii .  In the same way, V~3 = V]3:A2 
and V23 = Via: A1. 

(c) Choice 3. One proceeds likewise for L a. 
(V31, V31) spans the same type E IR as (V~I, Vi~) 
because 

v a l = - ( j / 2 )  V~1 + [ ( 3 +  i31/2)/4]V11, 

V31 = [(3 + i31/2)/4] V]1-  ( j / 2 )  v i i  ; 
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(V32, V232) and (VI2, V~2) span the other type E IR 
because 

V32 = _(j2 / 2) VI2 + [ (3 - i3 ,/2) / 4 ] V~2, 

V232 = [(3 - i3'/2)/4]V12-(j2/2) V~2; 

V33 = VI3"A2, V~3 = Vz~3"A,. 

It would be false to conclude that the four invariant 
subspaces E, E, A2, A, exhibited by any genitor 
choice do not depend on the considered choice! In 
fact: 

(d) Choice 4. In the former three choices, the 
genitor A belongs to the conjugation class of 3' in 32 
and the genitor B belongs to the class of 2~. In choice 
4, the rSles are inverted. Here are the vectors of L4: 

V 4, _ jH 4, . 4  .2 4 .2 4 H ~ , + H 4 2 ,  = +JH,2-J H2,+J H 2 2 -  

V42=jH~, +jH~2+j2H~, +j2H42 + H~, + H~2, 

V ~ , =  .2 a .2 4 -J Hal +J H,2-jH 4, +jH42 H 4, + H42, 

V42=j2H4,, +jEH42 +jH4 , +jH42 + H~, + H~2, 

V~, = - H  4, + H~2- Ha, + H~2- H 4, + H42, 

V42 = H~, + H42 + H 4, + H42 + H 4, + H42. 

After a projection of the transformed vectors o n  L 4, 
one gets: 3 ' .  V~,=j2V4,, 3'. V42=j2V42, 31 . V~,= 
jV4I, 31 4 • 4 31 = 31 = v22=sv22, .v42 v 2, 
2~. V~, = - V241, 2 1 a . V12 = V42,  2 1 a . V241 = -- Vll , 
2~. V242 = V'~2, 2',,. V 4, = -  V~,, 2~. V42 = V~2. This 
results in: (V4,, V4,) • E, (V42, V42) • E, V 4, 'A2, 
V342 : A,.  

Let us now project the vectors of L a on L"  

V14, = (VI ,+  V~2+ V'~,-V;2)/2, 

V42 = (V',, - V~2+ V'~,+ V;2)/2, 

V 4, = ( V',, + VI2- V'~, + V~2)/2, 

V~2 = ( -  VI, + VI2 + V'~, + V'~2)/2, 

= v 3, = v L .  

The invariant one-dimensional subspaces A, and A 2 

do not depend on the choice ofgenitors of the ordered 
partition. On the other hand, the two invariant two- 
dimensional subspaces of type E depend on the 
choice of genitors. In fact, one must consider that the 
four-dimensional subspace of the two IRs of type E 
forms a well defined whole which may be dissociated 
into two invariant subspaces in several distinct ways. 

This surprising property of the algebra M of a 
non-Abelian group (i.e. a group possessing many- 
dimensional IRs) is not indicated in the classical 
treatises of group representation theory that we know, 
but it enlightens particularly the remark of Schonland 
(1971) quoted in the Introduction. 

When the algebraic structure of the group G is 
complex, it is not always possible to find a choice of 
genitors which allows a CRB for those PIRs relating 
to subgroups of high index, and the obtained reduc- 
tion is partial. Afterwards it is possible to resort to 
projection operators but we note that one then starts 
from a representation of which the dimension is much 
lower than that of the initial PIR. 

Example 4 
G =432, H = 2-a+b. The best reduction may be 

obtained using the following genitors: A l = 2a+b, a = 
2, B 2~ ,b  2, C ' = = =3~+b+c, C =3. The next partial 
reduction is gained:* 

(V,, , ,  V,21, V2,,, V22,, V3,,, V32,) : 7", + T2, 

(V,,2, V2,2, I/'3,2): 5 ,  (I/,22, V222):E, V322:A,. 

The representation T1 + 7"2 may be reduced by means 
of projection operators. 

The component T, receives the three vectors IV,, 
W2, W3 as a basis: 

IV, = H,I, - H , 1 2 +  H2,l - / /212+ H311 - H312, 

W2 = H,2, - H,22- H22, + H222+/-/3,, - H312, 

W 3 = n i l  I -- Hl12+ H221 - H222 -/-/321 +/-/322 . 

The three vectors W4, Ws, W6 constitute a basis for 
the component 7"2: 

W4 = -H ,2 ,  + H122 - H22, + H222 -/-/32, + H322, 

Ws = HIE , -  H122 +/-/21,- H2,2-  H31, +/4312, 

W6 -- - - H i l l  + H112-~- H221 -/--/222-1 t-/-/311 - / - / 3 1 2 .  

Finally, if G,, G2 a re  two isomorphic groups and 
H, , /42 are respectively two isomorphic subgroups of 
them, then a CRB of R(H2:G2) may be easily 
deduced from a CRB of R(H,  : G,); only the Mulliken 
notations may be changed. 

Example 5 
(a) G , = 2 / m , H , = i = { i ' , l ' } ,  A1=2 a , a , = 2 .  

P =  {(m', 2'), ( i ' ,  1 ')}= {H,,/ /2}.  

VII = - H I  + H2, V~ = H1 + H2; 

2 ' . V ~ = - V ' , ,  2 ' , V ~ = V ~ ,  i 1 .V ' ,=V ' , ,  

1~. V~= V~; VI~ • Bg, V~:A, (el Table 5). 

(b) G2=222, H 2 = 2 a = { 2 ~ , l l } ,  A2=2~c. It is 
sufficient to replace in the previous formulas the 
elements of 2 /m by the corresponding elements of 
222 to give: VZ~ • B3, V~" A ( cf Table 5). 

* For group character tables not given in the present paper, see 
for instance Atkins, Child & Phillips (1970). 
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Table 5. Correspondence between the elements and the 
IRs of the groups 2/m and 222 

Characters of their IRs. The first two rows and the first two columns 
give the characters of the IRs of group 2 (delete the subscripts 3 
and g of the Mulliken notation). 

222 1 i 
2/m 1 l 

A Ag  1 

B~ a ~  1 

Bt  1 
B2 1 

2~ 2~, 
21 ~1 m 1 

1 1 1 
- 1  1 - 1  

1 - 1  - 1  
- 1  - 1  1 

IV. The  subgroup  cha in  C R B s  

Consider now two subgroups H and K of G such 
as G D K D H. It is known that the PIR of G relating 
to K is equivalent to a subrepresentation of the PIR 
of G relating to H, this is indicated as R ( K : G ) c  
R ( H  : G) (Masmoudi & Billiet, 1989). It is also known 
that the PIRs relating to two conjugate subgroups H, 
and HE are equivalent, this is indicated as R(H,:  G) = 
R(H2: G). Let us see how these facts are expressed 
at the level of the CRBs. 

Example 6 
G = 3 2 .  
(a) H , = 2 ~ = { 2 ~ , l ' } , A = 3 ' , a = 3 = p .  

P' ' 3' 1' ={(2-~-b,  ) ,(2~,32),(2~, )} 

={HI,H'?,H~}, 

V',=jH', +j2H21 + H3 ~= V142 

(cf Example 2 continued and Table 1), 

V'?=j2H ', +jH~ + HI = V~2, 

V~- H~ + Hi + H~- V~2. 

Then: (V',, V~)•E, V~•A,; R(2~:32)c R(1•32). In 
fact it would be false to conclude that the CRB of a 
PIR R(H'32) constituted automatically of some vec- 
tors of the CRB L 4 of R(I" 32) whatever the subgroup 
H may be! For: 

(b) H2=2b={2~b, l ' } ,A=3 ', a = 3 = p .  

p2=  {(2~, 3'), (2[~-b, 32), (2~, l l)} 

= {H 2, H 2, H32}. 

V[:jH[+j2H~+H 2, 
V2=j2H2+jH2+H~, 

V2:H[+HE+H~. 
• .2 2 , 3' V2=j V,,  3 V2=jV 2, 3' .  V 2= V 2, 

2~ V2=jV2? 2~ V27 .2 2 , • , . = j  V , ,  2 ~ .  V ~ = V ~ .  

(V21, V2). E, V2:A, . R(2b.32)= R(2a.32). 

Now project these vectors on the bases L' and L 4 of 
R(1"32): 

V2=(V~,- jV~2+ VI,+ V~2)/2 

= [(3 - i3'/2)/4] V~,-  (j2/2) V42, 

V2=(-j2V~, + V~2+ V~, + V~2)/2 

= [(3 + i3'/z)/4] V~,-  ( j /2)  V~2, 

= v h  = v h .  

The CRBs of the PIRs R(2a '32)  and R(2b •32) are 
different at the level of the irreducible component E, 
although these PIRs are equivalent and although the 
chosen genitor is the same in both cases. Moreover, 
the invariant subspace E of R(2b" 32) is not confused 
with any of the four invariant subspaces of type E 
exhibited for R(1"32)! The reason that the vectors 
of the CRB of R(2a •32) belong to the CRB L 4 of 
R(1"32) is the following. The first genitor used to 
construct L 4 is A = 2'a, thus one obtains P A  = 2a, i.e. 
the partition of 2a relating to 1. The second genitor 
is B = 31, i.e. the genitor used to construct the partition 
of 32 relating to 2~. 

One deduces from this example a process which 
constructs little by little the basis relating to a sub- 
group Hq end of the subgroup chain: G D H1 D H 2 D 
• • • ~ Hq.* Firstly, one tries to construct a CRB L, of 
R ( H , ' G ) .  Then one tries to construct a CRB L2 of 
R(H2"G) containing the vectors of L, by means of 
a partition of H, relating to HE for each coset of the 
partition of G relating to H , ,  the same process is 
applied for the following subgroups of the chain to 
build Lq " Lq D Lq_ 1 D . • • D L 2 D L,. Note that in this 
process the first genitor(s) of the partition of G relat- 
ing to Hq is (are) the last found, the last genitor(s) 
is (are) found in the first step• 

Example 7 
G = 432, H, = 4a262 b+c, HE = 4~, H 3 = 2~. 

c - b + c  

R(H,  G) is constructed taking ' • 3a+b+c as a unique 
genitor, thus the CRB L, = [ 11',, V2, V3] is obtained: 
(V,, V2)'E, V3:A,. Then R(H2: G) is constructed 
taking 21 as a first genitor which enables one to find 
H, again, thus the CRB 

L~=[V,,, v,2= v,, v~,, v== v2, v~,, v3~= vd 

is obtained: (V,, ,  Vz,, V3,)" T,, (1/',2, V22)" E, 
V3z" A,.  Then R(H3" G) is constructed taking 4~a as 
a first genitor, which enables one to find HE again, 
thus the CRB L3 is gained: L3 = [V, , , ,  1/,,2 = VI,, 
V,~,, V,== V,2, V~,,, V2,~= V~,, V=,, V=2= V=, 
V~,,, V~,~= V~,, V~,,  V3== V~]'(V,,,, V~,,, 
V3,,)" T2, ( V,,2, V2,2, V3,2)" T1, ( 1/',2,, V22,)" E, ( 1/',22, 
V222)" E, V32, • A2, V322" A,.  The genitors of R(H3" G) 
a r e A = 4 ~ ,  B = 2 ~ ,  C = 3 '  a.-I-b+c • 

* The process is of no interest if G is cyclic. 
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V. The case of an invariant inductor subgroup 

When H is an invariant subgroup of G, let us call K 
a group isomorphic to the factor group G/H.  Then 
the genitors of R ( H : G )  are in a one-to-one corre- 
spondence with the genitors of R(1 : H),  R ( H :  G) 
and R ( I : H )  are isomorphic. If there exists a CRB 
of R ( I : H )  then there corresponds to it a CRB of 
R ( H :  G). If K is an Abelian group, all IRs contained 
in R ( H :  G) are one-dimensional. All this applies in 
the particular event where G is the semi-direct prod- 
uct H x  K (this event occurs most frequenctly in 
crystallography),* then the genitors of R ( H  : G) are 
confused with those of R ( I : H ) ,  only the Mulliken 
notations change. 

Example 8 
G = 32/ m = H x K ,  H = 3 ,  K = 2,,/ m,. ~- G/  H. The 

genitors are A = 71 and B = 2~. This results in 

R(1 : 2a/m~) = B, + B s + A,, + As, 

R(3 : 32/m) = A2u + A2s + AI,, + A1 s 

(cf Tables 4 and 5). 
If one goes over all cyclic subgroups K of G such 

there exists an invariant subgroup H of G with G = 
H xK,  then the PIR R ( H : G )  provides all one- 
dimensional IRs of G. In particular, if a = 1 (H = G), 
the identical IR is obtained. If a = 2, in addition to 
the identical IR, an alternative IR is obtained, it is 
symmetrical with respect to the elements X of H and 
antisymmetrical with respect to the elements AX. 

Example 9 
G = 3 2 / m = H x K ,  H = 3 ,  K = 2 , , = G / H ,  A = 2 ~ ,  

R(3" 32/m) = A2s + Als 

= R(1:2 , , )=  B +  A (cf Table 5). 

If a = 3, in addition to the identical IR, two com- 
plex conjugate IRs are obtained, they are symmetrical 
with respect to X ~ H, their traces are respectively 
equal to exp (+2i7r/3) and exp (+4i7r/3) for the ele- 
ments AX and AEx. 

Example 10 
G = 3 = H x K ,  H = i ,  K = 3 = G / H ,  A=31. 

R(1" 3)= Es(2) + Es(1) + A s 

= R ( l ' 3 )  = E (2 )+  E(1)+  A. 

If a = 4, K contains {11, A2}. Then, in addition to 
the identical IR and the alternative IR, R(H"  G) 
contains two complex conjugate IRs, they are sym- 

* Let us point out two cases for which G is not necessarily the 
semi-direct product of H by another subgroup. 1st case: G = 4, 
H=2, G/H=H [cf Example 3(a)] 2nd case: G=D*, H=R, 
D*3/R = D3 = 32 (D  3 is not a subgroup of D*) (see deposit). 

metrical with respect to X and A X  2, their traces are 
equal to +i and :~i for the elements AX and AX 3. 

Example 11 
G = 4 / m = H x K ,  H = m ,  K=4"-- 'G/H,  A = 4 1 .  

R(m:  4 / m ) =  E, (2) + B s ÷ E,(1)+  A s 

= R ( l ' 4 ) =  E ( 2 ) + B + E ( 1 ) + A .  

If a =6,  R ( H ' G )  contains the identical IR, an 
alternative IR and two pairs of complex conjugate 
IRs. 

Example 12 
G = 6 / m = H × K ,  H = 2 ,  K = 3 = G / H ,  A = 3  ~. 

R (E:6 /m)=  E2,,(1) + E2s(2) + A,, 

+ EEs(1) + E2u(2) + A s 

"- R ( 1 : 3 ) =  Eu(1) + Es(2) + Au + Es(1) + E,,(2) + A s. 

Finally, in the event of G = H x K with K a non- 
Abelian subgroup, R ( H ' G )  necessarily contains 
many-dimensional IRs. 

Example 13 
G = 3 2 / m = H x K ,  H = I ,  K = 3 2 = G / H ,  A=31, 

B=2~ .  

R ( l " 32/ m ) = 2E s + A2e, + A, s 

-~ R(1 : 32) = 2E + A 2 + A1 (cf. Table 2). 

VI. The direct product CRB 

Now suppose that the group G is the direct product 
of a subgroup G1 and a subgroup G2; we consider 
here only the case where the order of G2 is equal to 
2 (G2 = {Y, 11}); this covers all cases met in crystal- 
lography; however, this process extends to groups G2 
of higher order. Suppose a CRB of R(H~'GI)  is 
known. Then it is easy to get a CRB of R ( H I " G )  
and a CRB of R(H"  G), with H the direct product 
of H1 and G2.* 

(1) Starting from the genitorst of the CRB L1 of 
R(H1" G1), the genitor Y is added to obtain the CRB 
L of R(HI" G). To each vector Vkj of L1 correspond 
two vectors of L, i.e. Vlkj = -- Y.  Vkj + Vkj = 
( -  Y + 11). Vkj and V2k j = ( Y + 11). Vkj. To get a gen- 
erator system of G, it is sufficient to add the element 
Y to the generators of G1. Any generator X of G1 
transforms V1kj and VEkj just as Vkj because X .  Vlkj = 
X. ( - g + l l ) .  V k j = ( - Y + l l ) . X .  Vk~ and X .  VEkj = 
( Y+ 11) . X .  Vk~ (remember that X commutes with Y 

* The process is of no interest if H 1 and H are invariant sub- 
groups (see § V). 

t We suppose here that two genitors are used to construct the 
CRB L1; the process remains true whatever the genitor number 
may be. 
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and 11). On the other hand, Y transforms Vlkj into 
its opposite and keeps V2kj invariant as y 2 =  11. In 
other words, to each IR of R(H~ : G~) correspond two 
IRs of R(Ht: G), the former is antisymmetrical with 
respect to Y [vector(s) V~kj], the latter is symmetrical 
[vector(s) V2kj]. 

Example 14 
G = 32/m, G~ = 32, G2 = 1, HI = 2a. From Example 

6(a), one gets the six vectors of the CRB of 
R(2~:32/m) (cf. Table 4): 

v,, = - i ' .  vl  + v[ ,  

v13 = - i ' .  + vJ, 

= i ' .  

V l 2 = - i  1 " V lq- V21, 

V~, = i I . Vl  + V l ,  

V23 = i I " V 1 -at- V 1 " 

(Vii, VI2): Eu, V13:Alu, 

(V21, V22):Eg, V23:Alg. 

(2) When H = H I ® G 2 ,  one uses the fact that 
G~ G2 and H/G2 are respectively isomorphic to G~ 
and H1. The CRB L of R(H:G) is composed by as 
many vectors as the CRB L ~ of R(H~:G1), their 
genitors are the same and each vector of L is obtained 
from the corresponding vector of L l replacing HI by 
H. The generators of GI transform the vectors of L 
in the same way as the vectors of L 1. The extra 
generator Y keeps invariant each vector of L. To each 
IR of R(HI :  G1) corresponds one IR of R(H: G), it 
is symmetrical with respect to Y and it is also con- 
fused with the symmetrical IR previously met [cf. (1), 
vector(s) V2kj]. 

Example 14 (continued) 
H = 2,,/m~ = H1 ® G2. One gets immediately the 

three vectors of the CRB of R(2a/ma:32/m) (cf. 
Table 4): 1/1= V2~, V2 = 1/22, V3 = V23; (I/1, V2):Eg, 
V3" AIg. 

VII. Results 

Except for the case of groups 432, 43 m and 4 /m 32/m 
to which we shall return, it has been possible for us 
to obtain CRBs for all PIRs of all crystallographic 
point groups using the processes proposed above. 
Starting from the CRBs of the PIRs of the groups 1, 
4, 3, one obtains by means of an isomorphy those of 
the groups 2, m, 4, then by means of a direct product 
those of the groups 2/m, 222, mm2, 4/m, 3, 6, 6, 6/m. 
Starting from the CRBs of 422, one gets by means of 
an isomorphy the CRBs of 4mm, 42m, then by means 
of direct products those of 4 /m 2/m 2/m = 422 ® 1 = 
4mm ® T = 42m ® 1. The same process is used starting 
from 32 to obtain the CRBs of 3m, 32/m = 3 2 @ i =  
3 m ® l ;  next one gets those of 622, 6mm, 6m2 which 

are isomorphic to 32/m; then by means of direct 
products one gets those of 6 /m 2/m 2 /m = 32/m ® 
2c=622®i=6mm®i=6m2®l. The CRBs of 23 
allow one to obtain those of 2 /m 3 = 23@ 1. 

Concerning the group 432, it has been possible for 
us to obtain the CRBs of all subgroups except those 
of subgroups 1 and 2a+b (or its conjugates). For both 
unique cases, the proposed method only enables one 
to get a partial reduction; it is possible to end the 
reduction by means of projection operators starting 
from an extensively reduced representation. By means 
of an isomorphy one gets the analogous CRBs of ~,3m 
and then by means of direct p_roduct_s one obtains 
those of 4/m 32/m = 432®i  = 43m® 1. 

The CRBs of the non-equivalent PIRs of the groups 
1, 4, 422, 3, 32, 23 and 432 are recorded in the 
deposit;* the CRBs of other groups may be deduced 
by isomorphy and direct products without difficulty. 
We remark that for all IRs of all crystallographic 
point groups a basis is available up to an equivalence. 

The methods used in the present work extend to 
other groups, i.e. non-crystallographic point groups 
and especially to icosahedral groups I and Ih, to 
double groups (crystallographic or not) (see deposit) 
etc. 

Lastly, note that for groups not so well known as 
the groups enumerated above, the proposed method 
allows one to gain access to their IRs and their charac- 
ters when they are not known. 

* Data for groups 1, 4, 422, 3, 32, 23 and 432 have been deposited 
with the British Library Document Supply Centre as Supplemen- 
tary Publication No. SUP 52841 (5 pp.). Copies may be obtained 
through The Technical Editor, International Union of Crystallogra- 
phy, 5 Abbey Square, Chester CH1 2HU, England. 
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